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lThe Influence of Twist on the Motion

11

of Straight Elliptical Jets

by

D. A. Caulk and P. M. Naghdi

Abstract. This paper is concerned with a fairly detailed analysis of the motion

f a straight elliptical jet of an incompressible, inviseid fluid in which the
Jet is allowed to twist along its axis. Our study, which includes the effects
gravity and surface tension, utilizes the nonlinear differential equations

of the one-dimensional theory of a directed fluid jet. A number of theorems
are proved pertaining to the motion of a twisted elliptical jet and some special
solutions are obtained which illustrate the influence of twist.
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| Introduction

In the context of the three-dimensional theory, the motion of a fluid jet
in air is, in general, a difficult problem. FIor this reason, when dealing with
such fluid jet problems, it has been customary to cbtain approximate sclutions
to the three-dimensional equations by various means. Instead of adopting a

procedure of this kind, here we approach the subject from another point of view,
namely via the theory of a directed (or Cosserat) curve, which is based on a

one-dimensional continuum model comprising a material curve in Euclidean

3-space with two deformable directors (representing the cross-seclion of the jet)

attached to every point of the curve. Although the application of such a

direct approach to elastic rods has received considerable attention during the

past decade, corresponding studies for fluid jets have been limited to a few
apers by Green and Laws [5] and by Green [2,3,4].

The developments in (2,3,5] are confined to straight circular jets, while
the discussion in [4] is concerned with an elliptical jet which does not twist
along its axis. 1In the present paper, we consider a fairly detailed study of a
straight elliptical jet of an incompressible fluid and allow the jet to twist
along its axis. This study is of interest not only because the jet motion is
more general, but also because it may indicate what conditions are necessary
for more restricted motions, such as those in (2,3,4,5], to exist.

After a brief description in section 2 of certain aspects of the three-
dimensional motion of the jet, in section 3 we recall the basic equations of
the nonlinear theory of a directed curve in the form given by Green, Naghdi and
Wenner (7] and also record some specific results concerning an incompressible
medium. Next, in section L, the basic equations of section 3 are specialized
to those for a twisted elliptical jet. At this stage the field equations con-
tain three assigned vector fields and two inertia coefficients which are still

unspecified. The inertia coefficients reflect the geometry of the cross-section

l.




of the jet and the assigned vector fields involve the action of the surface

tension and the external pressure, as well as gravityt These quantities are
identified with an appeal to certain easily accessible results in the deriva-

tion of the basic field equations for rod-like bodies from the three-dimensional
equations as given by Green, Naghdi and Wenner [6]. Three-dimensional considera-
tions of this type are used further in section 5 to provide appropriate interpreta-
tions of the kinematics of the directors and to detefmine the relation of the
latter to the twisting of the jet and the way this twisting varies with time.

As a consequence of these interpretations we define in section % a number of

useful kinematic quantities, namely the jet spin w and the sectional shearing y

in the jet [see FEgqs. (5.5)], the sectional orientation § of the jet and its

rate of change, called the rate of sectional rotation [see Eqs. (5.11) and

i (5.12)], and the local twist per unit length of the jet [introduced following
l Eq. (5.12)]. Also included in section 5 is a brief discussion concerning the
special case of a jet of circular cross-section.

Constitutive equations for an inviscid fluid jet are considered in section 6
and are used to complete a system of differential equations governing the motion
of a straight incompressible inviscid fluid jet, referred to subsequently as an
ideal jet for convenience. This system of differential equations is then
utilized to prove several theorems pertaining to the moction of an ideal jet
with and without surface tension. One of the theorems, namely Theorem 6.2, is
the one-dimensional counterpart of the three-dimensional result expressing
permanence of irrotational motion. Another result of particular significance
is Theorem 6.4, according to which if an ideal jet is noncircular at some
{ material point and given instant of time and if the rate of sectional rotation

vanishes there, then at the material pcint in question the sectional rotatiocn

*In the presence of gravity, the axis of the jet must be vertical in order
| that it remain straight as assumed here.
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‘ i will have the same constant value for all time. Moreover (:im_- Corollary :,.;))’
if the rate of sectional rotation vanishes at every material point and if the
jet does not twist at some instant of time, then the jet must be without twist
: at all times during the motion. In section 7 we examine solutions of the
quations for an inviscid jet in certain special cases A thecrem of cor-
respondence is proved which relates all steady solutions for an inviscid
twisting jet of circular cross-section to corresponding steady solutions in
the absence of twist. In addition, we obtain a solution for the steady flow
of a uniformly twisted elliptical jet and examine each of the two cases it

contains. One of these reduces tc a solution given by Green and Laws [5)] in

the special case of a circular jet.
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2. The jet problem
We discuss in this section the three-dimensiocnal motion under gravity of an incom-
pressible fluid jet in airT The jet is assumed to be straight and moves parallel to

the gravitationasl field. We include in this discussion motions invclving rotation
about the jet axis and assume that the shape of the normal cross-section of the
jet possesses symmetry with respect to two orthogonal axes in its plane. As a
result of the rotational motion in the jet, the orientation of these axes may
vary continuously along its length and thus give rise to a twist which, for a
noncircular jet, will be apparent in the shape of the free surface. At this
surface, we allow for a constant surface tension T and replace the ambient
atmosphere by a constant external pressure po.

We use a system of fixed rectangular Cartesian coordinates xi::(x,y,z) and
the associated unit base vectors l,i,h such that the z-axis lies along the center
line of the jet. It is also convenient to introduce another system of orthogonal

coordinates ;i::(;’;’;)’ which are related to Xy through the transformations
X = x cos g+y sin 9 , y=-xsin g+ycos 8 , z =12 . (2:1)

where 9= 6(z,t) is a smooth function of z and time t. At each instant of time t,
equations (2.1) represent an orthogonal transformation in which the x-y plane is
rotated locally an amount @ about the z~axis which remains fixed. Let Ei’EQ’SB
denote the mutually orthogonal unit base vectors associated with the coordinates

f'."he term jet as it is used here denotes what is sometimes called a 'free jet'
and this usage should be clearly distinguished from others in fluid mechanics.
We do not consider a 'two-dimensional' jet, i.e., a two-dimensional flow in
which the fluid region is bounded by two nonintersecting open cylindrical free
surfaces, nor do we contemplate an immerced jet as described in E£chlichting
[11, ch. 11]. The twisting jet considered here should also be distinguished
from swirling flow within a rigid surface of revolution as discussed, for
example, by Taylor [12].



(X.V;%/)« Then,

© i cos 9+ ,j sin © 5 £ -1i sin 8§+ j cos 9§ - e. B . (2.2)
5 R oo Lol ~ = 2 /
We assume that the shape of the normal cross-section of the jet takes the
form of an ellipse. Then, the free surface of the jet may be represented
by
;Q =2
e T (2
05 4o
] 2
where
= Z, b = Z o (2.4)

are the lengths of the semiaxes of the elliptical cross-section. In the form
(2.3), o(z,t) is the local orientation of the ellipse and the three functions
Dl’®2 and @ are sufficient to specify the position of the free surface.

In addition to the condition that the surface (2.3) be material, on this
boundary we must also require that the discontinuity in normal traction balance
the surface tension and that the shearing traction be continuous. Thus, let E

*

denote the stress vector across a surface whose outward unit normal is v .

Then, on the surface (2.3) we must have
-
t = -p_ v
t={(a-ply
where the term q is due to the surface tension. With the help of (2.1) =nd

(2.3), q may be expressed in the form

»
Actually such a specific assumption is not nececsary in some of the discussion
of the following sections.




i 2 2 e 2R
q = T{[eZ sin x cos X(¢2"®]) - ($L$P7 sin” x+@¢,¢, cos %) ]

19 )

B 2 & 2 2 - I
4 9? sin® x +9, cos SO {(Dl sin” x +9¢, cos XJ(»]ZTDQ cos® x

+ ¢, P singx-[e(gsg-f;] f'inx:wrx—oae?“
222" 1 Z2 o g ) ¥ 2,

b ( ! 2 B e
- - S SO8 Ki~ 0S sin
2[(¢1¢2z @, )sin x cos x - 0, (p; cos” x+p sin X) ]

[(#,8,, ~918,,)8in x cos x+3,8,0, ]

x

5 2 : 2
E: ¢1¢2f(¢lz cos x-—$292 sin y)° + (¢2z gin X-+¢lez cos x )" +11} , (2.6)

where a subscript denotes partial differentiation, X is the polar angle in
the plane of the cross-section given by
e
2
s A (2.7)
X 1

2nd x and y satisfy (2.3).




3 A directed fluid jet

We summarize in this section the basic equations overning the mction of an
incompressible fluid jet. These are derived by a iirect approach based on the
concept of a directed (or a Cosserat) curve. A continuum of this kind, here~
after referred to as R, is an oriented space curve to every point of which two
directors are attached. We confine attention to a purely mechanical theory con-
tained in the more general thermodynamical development of Green, Naghdi and
Wenner [7]. Many of the results of this section parallel those of a related work
by Green [3], although the present kinematics are somewhat less rvstrictivo?

Let the particles (or the material points) of the material line of the

direct rve R be identified with the convected coordinate £. In the present
cor at time t, let the space curve occupied by the material line of
R red to by c, let r be the position vector of ¢ and & (a=1,2) the

~ ~

directors at r. Then, a motion of R is specified by

r=r(gt) , 4 =a(8t) , (gdalfo , (3.1)

where
P 150 /'Q \
~3 ag \\,'2/

is a vector tangent to the curve c¢. The condition (3.1)3 will ensure that

neither of the directors is tangent to the curve and that dl and gp maintain

the same relative orientation to each other and to a,. We denote the element

~

of arc length along the curve by ds, and from (3.2) we have

P
jon

ds = (a,,)

uv
-
©
W
w
&
&
o~
(s
-

33

$0ur kinematics allow for the rotation of the director pair relative to the
tangent vector 25 defined by (3.2).

7.




The velocity and director velocities are defined

v (2. 6] .,
5

-

(3.4)

where a superposed dot designates the material time derivative holding £ fixed.

A summary of the conservation laws in the purely mechanical theory of

directed curve in integral form is contained in [7]. For our present purpose,

it will suffice to record them in local form, namely

on

—= 4+ Af = \v

B " e T #
¥ A 35
Mg

where A is a function of € only, p is the mass density (per unit length) of the

curve and the symmetric inertia coefficients yaB=y°’B(§) are associated with the

director velocities w and are independent of time. In addition, n denotes the

contact force, pa the contact director forces and ¥ the intrinsic director
forces perunit length of c¢j; the vector fields £ and 2% represent the assigned

force and the assigned director forces, each per unit mass of the curve. The field

equations (3.5) are consequences of balance of mass, momentum, director momentum

and moment of momentum, respectively.

For an arbitrary part glé A §2 of the curve c of R, the rate of work by
211 external forces minus the rate of increase of kinetic energy may be

expressed as




g, MV

9% :
< = p(vev+y P W -w_)ds f
, R :

2 w ~B ’
3]
where we have used the notation
F
o0 i
1€ = o(g ) -P(g
g Bp/ 71
With the help of (3.5), (3.6) reduces to
g
2
e (3.8)
[
=i
where P defined by
R x Oy
AP=n. =+qq%. w + . "
~ ag ~ ~Q R ag i. 7/
is the mechanical power per unit mass.

From now on we restrict attention to a directed curve which is homogencous
and incompressible. In order to reflect the latter property in the one-dimensional
theory, as in the work of Green (3], we adopt the condition

d
S d = O 2. )) |
at [492?,3} (3.10)

Strictly speaking, two additional conditions are necessary in order to fully
characterize incompressibility in the context of a general directed curve.
However, for the limited scope of the present paper, the condition (3.10) is
sufficiontf By performing the indicated differentiation and using (3.4),

(3.10) may be written alternatively as

In an appendix at the end of the paper, a 1-1 correspondence is estzbliched
between the field equations (3.5) of the direct theory and the corresponding
equations which emerge from the three-dimensional equations when in the three-
dimensional theory the position vector is zpproximated by the form ’Alh)
Keeping this in mind, the specificetion of (3.10) is motivated from sn cxsmina-
tion of the condition of incomprescibility in the three-dimensicnal theory when
the position vector is approximated by (AYhfl See, in this connection, the
last paragraph of the Appendix.

9.
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where e is the two-dimensional permutation symbel. To complete the theory
of a directed curve under the congtraint conditio: .20 ) or e ) o W
that each of the functions n n,m and p ig determined to within an additive

constraint response so that

= A o Ny = Aoy
= X o =
YR 4 G R B i ) T D DD 3 {3512
A e o R ~ i
A /\0 /
where n, m and r}a are determined by constitutiv: quations and the functions
~ o~ ~

n{E,t), lafg,f\ an E (g,t) are the response due to the constraint; the latter
quantities are arbitrary functions of €,t and do no work. Introducing the Lagrange
rultiplier p and with reference to the expression (3.9) for the mechanical

: : e o o
power, the constraint response functions n, m and p must satisiy
~ ~ =

BV aw

S ap =y ~ oy )
PR L ¢ . —= =0 (3. 3)
(H+Pdlx§2) 3€ & (TT +P€ dea3 w_+p oF 343

for all values of By/bfg, v, and 3v10/a§ subject to the constraint (3.10). Eince

p is arbitrary, it follows that

e v, =0 . (3.14)

~B

Apart from the constraint (3.10), the preceding equations are fully
general within the context of the theory of a directed curve. In the next
section, however, we specialize the foregoing results to the case of a straight
jet and consider a class of motions which is of particular interest in the

present paper.
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In terms of the fixed system of coordinates (x,y,z) introduced in section 2,

we now consider motions of a directed curve in which the material line of R is

identified with the z-axis and the director pair lies in the x-y plane. For

later «,'lvl","‘hl“!;\'“, howt ver, we first consider moticns of R at time v=t. Th 18 o
let r(7)=r(g,7) and d (r) = d (€,7) designate at time Tt the position vector of

the material line of R and the directors, respectively; and, with reference to
the present configuration of R at time t, we adopt the notations r=r(t) sand

d =a (t). Then,
~ o~

rlr) = gZic (1)

4 (1) = ¢,(1 cos yy +j sin ;) , (1) = ¢
(k.2)
[21(7)22(7)33(7)] #0 ,

where z, aa and wa are each functions of € and T and a3(T) = Br(T)/BE. In view

of (h.2)3, the functions y, and ¥, are so restricted that

Sin(WQ'Wl) £0 . (4.3)

1t is clear from (4.2) that the directors lie in the plane of the normal cross-
section of the jet, but they are not necessarily orthogonal.. From (3.4), (4.1)
and (L.2), the velocity, the director velocities and the director accelerations

at time 7t are

vig) = vk oy v = w(t) , (4.k4)
w (r)=w(icos gy +jsin ¢ )+w s (-1 sin § +J cos ¢ ) (no sum on a)
~a( ¢ a(~ e #a) o a ~ Yot d o ) 3

(4.5)

(t)

w
~x

w
~Y




. N ¥ <
wir) =9 (¢ +¢-w )i cos §y +J sin §
{ ba’ GQ > s JQ ~ o
¢ (:2‘; w tw )(-i sin ¥ +J cos ¥ \nc sum on o) , (4.0)
(o ety B B o~ B!
where
\ . \ T :
v(T) (r) 5, w_ (1) ﬁa(T/ , w (7 by (7 ,
and
w (7)) =9 (1)¢ () (no sum on @) . (4.8
o DCX baf /
It should be clear that the functions v,wa,w ,¢a snd ¢ in (b4.k) to (L.t lepend
o o

on £ and 7, although this dependence has not been explicitly displayed.

Also, the superposed dots in (4.6) to (4.8) stand for the material time deriva-
tive with respect to 1. Now, without loss in generality, we may fix the orienta-
tion of the directors relative to the material line of R in one configuration.

In the present development, we make this choice reletive to the present configura-

tion and take the directors to be orthogonal at time t, i.e.j

(gt =0 » w(st)=e+7 , (4.9)

where @ is a function of £ and t. We leave 9 unspecified for the moment and
return to it later in this section. Using (4.9) and (2.2), the directors,

the director velocities and the director accelerations at time t can be

expressed as

% : = () )
G =9 o+ G =08 (4.10)

¢2(5252-w221) 5 (4.11)

JrIt should be noted that this specification is made after calculzting the expres-
sions for tne director velocities (1&.‘))l and accelerations (L.6).

12.
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- / ’) ;3\ /
W = (L. *C W )P, e. (2w, %€
i oy ey T AP 2 5 gk I T - S
(4.12)
i (s} Z)\
. 5 - (D ) >
Wy = (G, Gy mwp )08, = (2050, 0, /858
Also, by (3.2), (3.3) and (4.1), we have
=
P 7 L 2 L /
oy = @ k. (323) zZ A h.13)
-t

where a prime denotes partial differentiation with respect to €. With the help

of (4.10) and (h.lS)l, the nonvanishing constraint response functions (3.14)

(A

reduce to

- = -1 =, -2 = :
n==Pilts » 1 =-Dhp'ey » T =-Phz's, - Sl

~

The incompressibility conditiom (3.11), in view of (4.10), (4.11), (4.4)

and (4.13), becomes
/ 7 Jee ; -
2 BWy +2 B, t P10,V = 0 (4.15)
and from combination of (4.15) and (L4.8) we have
e =10y 3
IR (4.16)

Alternatively, (4.15) can be written in the form

P
J ; (®,8,) +8,8,v, = 0 - (4.17)

liow, in terms of (4.4) and (4.13), the differential equation (3.5)l for the

mass density p can be expressed as
prov, =0 (4.18)

and this along with (4.17) results in the solution

13.
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where B is an arbitrary function of € only. Since we have assumed the medium

to be homogeneous, B must be a constant; and thus, aside from a factor g, the
constraint (4.15) permits us to identify the density p of the jet wLLh‘pJ32.
In addition to the special choices (4.1) and (h.2), we further restrict
attention to a jet in which the shape of the normal cross-secticn possesses
* .
two perpendicular axes of symmetry. If we choose f in (L4.9) sneh that it
measures the angle between one of these axes and the x-axis, we may then

characterize this geometric symmetry through the requirement that at time t

the kinetic energy per unit mass due to the directors, i.e.,i—yaaﬁa- Eﬁ’
remains invariant under the separate transformations
= - - . 4.20
2& gl or 92 EE (4.20)
o S 20 2 4
Hence, we conclude that the coefficients y  ,y = must vanish:
12 20
y =8 =ROERET (’4-21)
Next, we examine the reduction of the field equations (3.5)2 3.4 With
3>

(3.12), (4.10), (4.13) and (4.14), the moment of momentum equation (3'5)h

becomes

o

c >

a X ¢
~3

A
T X

g%

A
X+ =0 . (.22)

4

d
~Y
The expression (L4.22) is regarded as an identity which places restrictions on

A
the form of the response functions E,QG and Sa. With the help of (3.12), (k4.4),
(4.10) to (4.14) and (4.21), the momentum and director momentum equations

(3. reduce to
3 5)2’3

‘Note that this is a purely geometric restriction and in no way limits the
generality of any materiel symmetry that may be present in the jet., 1In line

with the remark made in the footnote following Eq. (2.2), it should be noted that
at this stage in the development by the direct apprcach, the sssumption that the
cross-section is an ellipse has not been explicitly utilized. In fact, the con-
clusion (4.21) i¢ not limited to elliptical jets and the assumption that the cross-
section is an ellipee is actually introduced in the direct theory by (4.25).

1h.
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A — -
n'-(¢,0,p) e  + AL = Ave, (4.23)

3 T~ ~3

A1 1 | RS 0y 11 s ok D ol o ;
B YA =m-peozie; Ay A LG+ 6 e + (200t ey} (4s2)
N s 2 .M = 22 ’ 2 e )

5 I Z2 et + = e..= 2C t Je sl 4.25
Bt =T - pdyz gt 0pl(0 6 - up)e, - (205w, tuy ey ] =23}

In order to specify appropriate forms for the assigned vector fields f and
o' 4 : : e 11 22 i :
47, as well as the inertia coefficients y and y , we now make use of various
three-dimensional results recorded in the Appendix. In terms of the convected
(Lagrangian) coordinates @ (i=1,2,3) defined over the three-dimensional region
of space occupied by the fluid, as well as the kinematic assumption (Alh)l, the

base vectors g5 and the determinant of the metric tensor g are given by

B " 05 v BTty
g. = z'{e +91(¢ e +¢ee)+92(¢ e, -¢.6 e )} (4.26)
R3 ~3 LT R (e 27~ 2z~ 4 '

1
& L o3 ’
g = lgygg3] = 27010, »

where we have made use of (4.1), (4.10) and (Al). To be consistent with the
geometric symmetry characterized by (4.20), the function F, which determines

the lateral free boundary of the jet through the expression (A7), must satisfy
T e Eaee iy oSS e
F(e ,6") = F(-87,8 ) = F(8,-8 ) . (4.27)

Restricting attention to the case in which the cross-section of the jet is

elliptical and specifying F by
s ? e
F= (o) +(e) -2 , (4.28)

it is seen from (4.10) and (Al4) that (4.28) is equivalent to (2.3). Tt then
follows from the combination of (2.5) and (A4) that at the surface (4.28) the

vector fields Ti assume the form

15.
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% i . s ,
wlnp g s (4.29)

where q is given by (2.6). Also, since the axis of the jet is parallel to the

¥
gravitational field, the body force vector f is given by

%
where we use the temporary notation g for the gravitational constant in order
to avoid confusion with the determinant of the metric tensor g. Using

(h.:zﬂu, (4.29), (4.30) and (Al2), the expressions (Al9) and (A20)

reduce to
* * 1.2 1l 1. 2 I : ,
Af =-pz'p o ge Jdede ~I (p_-q)e°(g e - g°as") , (4.31)
a 2a
1
5 A sl
M =-J' (p-a)e”6™ (g d6” - g7de") (4.32)
2Q
*
where p 1is the constant (three-dimensional) density of the fluid. The region
of integration Q bounded by 3Q is defined in the Appendix. In the present
case, 3@ denotes the closed curve (4.28) and @ is the section of a surface
2
6~ = const. enclosed by 3Q. In addition, from (4.26)
x :
3, 0.5 "oy 1 o
°(gde -g°d =imig %
g*(grae” - g7de”) = - g, x [g do god67]
S S 2 ;>
=-2'(918, - (8,0707 +9,0,, 6 )e,1d8
: 22 1 2
tz'[ppe) + (0,056 -9,9, 8 )e,lde". (4.33)
An examination of the expression (2.6) for q reveals that it possesses symmetry
properties that may be characterized by
a(2152,,8,,x) = a(8,,8,,8,,X+1) , (k.34)
o
Q(¢l’¢2’9st) - Q(-$2,¢l,ez,x*'2‘) . (4.35)

16.
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Actually the function q, in addition to ¥, ba and 97, depends also on ‘507 and

? . Although the latter dependence is not explicitly displayed in (4.34) and
Y22

(4.35), the argument ¢ is taken to stand for the triple (g We
\ 2)s g o £ ja’ﬁav’ﬁyxz) ;

. - e - : af . La
sdopt the same notation for the arguments of the functions h B introduced below,

. : : e - s 2 1 2
eping the symmetry (4.34) and (4.35) in mind, we first parameterize © and @

on the closed curve (4.28) by

1 2 :
8 =cosX , 6 =sinx , OsXs2m . (4.36)
In view of (L4.34) and the symmetry of the trigonometric functions in
(4.36), we then easily conclude that
) ade®=0 , j ae®PagY = 0 (w,8,v=1,2). (4.37)
A a
Now put
haa(¢ 3950 ) = f qeadeB (4.38)
e o) :
aa
snd observe from (4.35) and (4.36) that
11 e e AL
b (8,58,58,) = h°°(9,58,,0,) =-h"(8,,8,,8,)
0 (4.39)
32
h (¢l’¢2992) s h (®23¢l’ez)
Hence, only two of the four functions defined by (4.38) are independent. For
convenience, we set
i q12 e hll (4.50)

and in what follows express all integrals of the type (4.38) in terms of h and
m. After performing the integration in (4.31) end (4.32) with the help

of (4.33) to (4.40), we obtein

-
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* *
A = z'{-p n¢l¢2g -+npo(¢l¢2)z -¢2¢lzh(¢l,¢2,ez)

;) 2 \
- - e =) l !
¢l¢?zh(¢2’¢l’ez)+ ez(\ﬁl ¢2)m(¢l’¢2,92)}€3 s (}'41)
e N (L.l
A = 28l +h(8, 50,58, )]e) -2’0 m(8,,8,,8,)e, (b.42)
2 @2 = wntl
M = z'p [-mp +h(p,,0,,8,)]e, +2'8,m(3,,8,,8,)e; (4.43)
where
f iiae
h(g,,0,,0,) = I q cos“Xdx , (4. k)
™
1 ; i
m(ﬁl,:be,ez) =-3 ; q sin 2x da&x , (4.45)
in view of (4.36), (4.38) and (4.40). We do not record here the explicit
expressions for h and m, since they will not be needed in their most general
form in the subsequent development. However, it may be noted that due to the
additional symmetry of g when ez =0 the function m satisfies
m(¢l,¢2,o) T (b.46)
Also, by (l¢.39)l and (4.40), we have
m(¢ls¢lsez) =0 ()’“h?)

so that m vanishes identically in the absence of twist (eZ =0) or in the case of
*
a circular jet (¢l=o2).
Next, we use (Al0) and (A21) to determine \ and y“B. From (A10), (L4.26)

\

and (4.28), we obtain

*
A= pnz'p0, (4.48)

.The notion of twist and the conditions under which the jet is circular will be
made more precise in the next section.

18.
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which, together with (3.5),L and (h.l})?, yields
¥
p =P TS,

* .
Since p is constant, comparison of (4.48) and (4.19) suggests that we put

Using (4.48) in (A21), we again obtain (L.21) and the values

1,2

il & 22
SN S s

Finally, if we use (4.41) to (L4.43), (4.48), (4.21) and (4.51) in the
field equations (4.23) to (4.25), they become

A
an

e * » \
3 - (P, e gi0s8 +0,8,,0(0,,8,,8 ) +0.8, h(s,.0,,6 )

T Bl
% GZ (ﬁ; o al)m(¢1_>¢2)ez> +1p ¢1¢2V}S{7, >

(Z5 - /2" )0y = (-p-0.0,0(0,,8,,0,) + T 10 030,(L, + & -uo)le,
+ {(9m(8,,9,,8,) + [ o 832, (0 +2C0)) e,

2')8, = {-P-88,h(8,:8,,0,) + {7028, (¢
'iﬁgm(éz’°L’ez ; % "°.’;¢1(&2 20,5 ) e

where we have put

p = (P-mp )00,

In the spirit of the developments cutlined in ithe Appendix, we note
-— *
in passing that p can be related to the pressure p in the three-dimensiocnal

theory. To see this, we write the constrainl response for an incompressible

19.
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(4.50)

(k.52)

(4.53)

(4.55)
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fluid in the form

. 3 M
e}, * i :
=-p g°g . (4.56)

~

—_ -—
If we assume that n is the integrated resultant of T~ through the definition

~

“A}37l,thon with the help of (h.lh)l and (h.QG)l ~» We have
; =
pa— * l 2 1 . L=
p = drpde de —‘ﬂ—j‘pda > (4.57)
Qa G ORS (Y

where da is the element of area in the normal cross-section of the jet. Thus,
from a three-dimensional point of view, 5¢1¢2 is the resultant force due to the
*

pressure p on a cross-section of the jet and p/ﬂ represents an average pressure.

If we denote this average pressure by p, then (4.55) may be replaced by

p = 1p,0,(B-p) - (11.58)

20.
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5. Additional kinematic considerations.

In this section, we examine in more detail the kinematics associated with
the rotation of the directors in the plane normal to the axis of the jet. 1In
particular, we appeal to the three-dimensional developments of the basic equations
outlined in the Appendix to provide physical insight into the nature of the kine-
matic variables @, and w. defined by (h.Y)Q for the directed fluid jet.

il 2

Referred to the orthonormal basis es introduced in section 2, the three-

r~.

. . . . x .
dimensional velocity field v in (A2) can be expressed as

* 1 2 3
v =N Y e aue, b2
From (5.1) and (2.2), the component of the vorticity vector in the direction
of the Jjet axis at time t is calculated to be
* 1,9V Qv 1cl OV 1e avl
s(eurl v ) S A - ) = s T T ¥ % e
ax oy 1 230 2 28
Let D denote the rate of deformation tensorT with components dij relative to
e.. Then, dl2 represents the rate of shearing in the plane of the cross-
section at time t and is given by
2 2 1
1 1 A
G e e e B e Bl i g 2 B0 (5.3
ox dy 1 &8 2 39
Consider now the approximation (Alﬁ)l for the three-dimensional velocity
field in the fluid. Using (%.4), (4.8) and (4.11), (Al5)l takes the
form
* 1 2\ 2 1y
= - )& v [ Je . +ve . 54
S T R Y ik, e v :
% » .
Substitution of the appropriate components of v es given by (5.4) inte (5.2) and

(5.3) yields

»
'Recall that the rate of deformaticn tensor is defined as the symmetric part
of the gradient of the velocity v*.

21.




and w, of the director velocities may be com-

Thus, the rotation components Wy o

bined in the manner indicated by (5.5) to suggest physically meaningful

1,2
quantities, and it may be useful to adopt w and Y as slternative kinematic
variables whenever interpretation is important. We call @ the jet spin and

Y the sectional shearing in the Jjet.

The rotation of the directors may also give rise to a change in the
orientation of the elliptical cross-section. In order to display this relation-
ship explicitly, we need to dispose of some preliminary analysis based upon the
results recorded in the Appendix. To this end, consider the position vector P

of a typical point in the three-dimensional body at some time 7. Recalling

(Alh)l, as well as (4.1) and (L.2), it may be written as

p(1) = p(6%8,7) =2k + (8'9, cos y, + 6%, cos y,)i + (679, siny + 8%, siny,)j . (5.6)

It follows that the position (x,y) occupied by the material particle (el,ee)

at time 7 is given by

»~
1}

i 2

8 ¢1 cos wl-+e ¢2 cos wz p
i - 2 r

y=0 31 ein wl-+e ¢2 Sin ¢2 s

where since we are concerned only with details in the cross-section of the jet

3

we omit explicit reference to z or 8°. Inverting (5.7), we obtain

22.




9¢} G X sin wp-y cos gp s
(
5
x ok T ad | S oo
Lug g =-X%X sin Vl Yy COf " ;
where
208 #. sin . ~sin §. cos8 ¢. = sin(y. = ¢ = 0 (5.9
i & S aP, Vo V1 Vo (41 - 4,) # ke

and where use has been made of (4.3). Now the free surface is loecated by the
time-invariant expression (4.28). Thus, after substituting (5.8) into (L.28),
we can locate the position of the free surface in the plane of the normal crosc-

section of the jet at an arbitrary time 7. This leads to the expression

2 e 202 2 2. i
(¢ sin® y.+g¢- s y - (¢~ sin 2¢_ + sin 2y )x;
(35 sin” y, +¢; sin Jl)x (85 sin 2y, + ¢, sin 2y, )xy
2 2 2 2 \ ¢
+ ( S + e )y ( " T -
\@5 COS~ {5, + @, COS™ ¥, )y £ o0,
By a well-known formulaf the angle @ that a semiaxis of the ellip: 5.10) makes
relative to the fixed Cartesian x-axis is given by
¢2 sin 2y '+®2 sin 2y
% 1 1 N 2 k-
_ tan 20 = 5 5 . { Jsll)
& ¥ DS 24
Z ®, cos 2¢l B, COS 2y,
; Thus, @ is a measure of the orientation ¢! the elliptical cross-section of the
% jet and, in view of the discussion preceding (4.20), it is clear that @ in
:

(5.11) may be identified with its counterpart in (4.9) at time t. We call ¢

"? the sectional orientation of the jet at a point £. Taking the material time
e
E derivative of (5.11), evaluating the result at time t and making use of (4.9,
g
5 we obtain
2 e
w._ -t
é‘%z i :
= >3 h
Os =@
o Sarih |

which is an expression for the time rate of change of the sectional orientation

te

ee, for example, Noble [2], p. 379.
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at €. We call g the rate of sectional rotation. The twisting of the Je!

2
associated with the spatial variation of g§. Hence, § 79, 32z may be regar
. . . . . %
as representing the local twist per unit length of ti et, or simply the t.
Before proceeding further, it is of interest to draw correspondence betweer

aspect of the kinamatics of a directed curve as given by Ericksen and
'ruesdell [1] and the present developments for a twisted jet. In our notation,

v

these authors have called

SN

the components of the wryness of the directors along the curve ¢ of R. With

(4.10) and (5.13), for the twisted jet we have
’ A, AR = ’
g& 941 O ‘Dlmlz 2 gl ,&12 i 25103292 ’

’ B Al Y
d - d 900, » 4y d, = 29,0,

Hence, in the special case when the length of each director is constant along
¢, the wryness corresponds to the twist.

Returning to (5.12), we note that this expression for 9 is a purely kine-
matical result and rests on the established connections between the theory of a

directed curve and developments from the three-dimensional theory. With the help

of (5.5) we may express (5.12) in the alternative and perhaps more revealing form
2 2
. ¢l+¢2
e:w-}y(_—2 2) . (")'15)
¢1°%

Thie suggests that the cectional rotation is due to the sectional shearing as

well as the jet spin.

*It may be noted that in general secticnal rotation will cause a change in the
twigt. We also cbeerve that even though § may vanish everywhere in the jet,
the jet may still twist. This ie because §=0 implies only that ¢ is a func-
tion of € and not that § is constant.

2k,
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Since the sectional orientation can be defined only when the jet is
noncircular, (5.12) or (5.15) are valid as long as 3]7#t2. The case of a
circular jet must be treated separately. For this purpose, we first observe
that the necessary and sufficient conditions for (5.10) to represent a circle

sre

A 2
$, Sin ng t¢, sin QWl =RD by

(= &0
5 \Je10)
2 o) - il e =
¢2 cos hwe ¥$l cos 2*1 =0 .
Since 31 and ¢, cannot vanish in view of (3.1)3 and (4.10), it follows that
=
tan 2¢; = tan 2y, (5+17)
and the only solutions of (5.17) consistent with (4.3) are
i
Now if we substitute (5.18) into (5.16), we obtain the result
¢l = ¢2 . ® ) (r/.l")
where 4 is the radius of the circular jet. Using (5.18) and (h.6)3 in (5.5),
we also have
'”1 = w2 = @ ’ Y = O " (_')-:C\
The results (5.16) to (5.20) are valid for i, time 7. In particular, recalling
(4.9) and (5.18), we may identify g with " and write for all time
e - '-l = v2 = w ) (l"zl)

where 9 refers only to the orientation of the corthogonal director pair since

the cross-section is now completely symmetric.




"

Therefore, in the special case of a circular jet we must replace (5.5)
and (5.12) by (5.20) and (5.21), respectively. The result (5.21) cannot be
obtained directly from (5.12) or (5.15) since each has a singularity at 3, ;¢2.

In a circular jet, @ is associated with the rate of rotation of the director

pair which, by (5.21), is the same as the jet spin; and a“circular jet twists
if the orientation of the director pair is not constant along its length. Of
course, due to the symmetry of a circular jet, evidence of twist will not be
apparent in the shape of the free surface.

In certain problems, the jet may experience a transition from an elliptical
cross-section to a circular one. This may be accommodated by requiring 6 to be

continuous at the transition.
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6 An inviscid directed fluid jet: Some general results.

The stress response in the three-dimensional theory of an inviscid fluid
involves only a hydrostatic pressure. If the fluid is also incompressible, then
the pressure becomes an arbitrary constraint response function and the determinate
part of the stress response vanishes identically. Keeping this in mind, as in
[2], we define an inviscid incompressible directed fluid jet by the assumption

that

N
GO B% e n (6.1)

5>

= 2 :
Substituting these values into (4.52) to (L4.54), we obtain
D, TP 61058 = 0,0, 1(8)585,8,) ¢ 818,1(855018,)
+ 8 (8- 05)m(8)58,50,) +70 3 10,7
D+ 018,08 :8,50,) = & 0 g0, (L, +C5 - w)

AL * ¥ ”
'm($la¢2,92) =T ¢l®2(wl'*251wl) )

A
P+ 01851(8,8,9,) = & o 938, (6, % & - p)

3% .
-m(gp58158,) = w 0 By, (wy *20m,)

where we have omitted the superposed star from the gravitational constant g.
In a complete theory, the equations of motion (6.2) must be supplemented by
the incompressibility condition (4.16) and the results (4.8) and (5.12). 1In
the rest of this paper, for convenience we refer to the straight, inviscid
incompressible directed fluid jet characterized by (6.2), (4.16), (4.8) and
(5.12) as an ideal jet.

We have already seen from (5.20) that the sectional shearing y vaniches

identically in the special case of a circular jet. With reference to an ideal
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jet, we now ask if there are other circumstances for which the sectional

shearing is also zero. For simplicity, we omit surface tension and set

When y=0, it follows from (5.5) . that

P = = - ('J.;‘ )
Wy D w i )
Then, provided @ does not vanish, from (6.2)3 5 we find
>
Cl ; Q? o (6.5)

where { is introduced for convernience. With the help of (6.3) to (6.5), equa-

tions (6.2). and <6'2>h may be combined to yield

2
@2 -92)(c+P-u®) =0 . (6.6)
Hence, we conclude that
¢ =8, > (6.7)
unless
Er-uf =0 . (6.8)

When (6.8) is not satisfied, it follows from (6.4) and (6.7) that the jet is
circular. It remains then to examine the implications of (6.8). From (6.8),

(6.3) to (6.5) and (6.2),, we have p=0 and integration of (6.2). gives

2 1

(o))

v = gt+—fl(§) s (6.9)

where f, is an arbitrary function of £. HNext, from (h'7)l.we have

28.
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w z = % ptzrf(g)t4f(=‘-
2 2 B 1 o\%
: (6.10)
' g = f{(i)t'* 1':;(.5';) 5
i where f[? is an arbitrary function of € and is such Lhut,f i‘é(i)/() for all &.
sing (6.5) and (6.9) in (bf.]_t")\), we obbtain
¢ =-flj2z! (6.11)
i
and with (6.8) and (6.10) this gives
2 2 ;
b= 3L (6.12)
Then, substitution of (6.3), (6.4) and (6.10) to (6.12) into (6.2)3 yields
l a g= LG fl(g) = const. (6.13)
Thus, if (6.7) does not hold, then w and Yy are both zero and by (5.12) we also
have
6=0 . (6.14)

The above results may be summarized as

Theorem 6.1. If the sectional shearing y vanishes at a point € in an ideal

Jet without surface tension, then either the jet is circular at g or both the

Jet spin w and the rate of sectional rotation ﬁ are zero at £.

As a consequence of the above theorem, we observe that when the jet spin is

nonzerc at a noncircular section of an ideal jet without surface tension, the

=
il

|
e ]
R sectional shearing cannot vanish there. Hence follows
{
M Corollary 6.1. An ideal jet without surface tension can rotate rigidly about
[
| its axis only if it is circular.
|
 : The last result also follows from the three-dimensional theory. To see this,
4

Yhis restriction on f2 is due to (3.1),.

3

29.

b




M e .

ot 7

"

we Observe that when a three-dimensional body rotates rigidly, the velocity
field in the body is completely symmetric with respect to the axis of rotation.
lence the three-dimensional pressure of a rigidly rotating jet will have rota-
tional symmetry about the jet axis. To satisfy the boundary condition that the
pressure be constant at the free surface, the jet must be circular.

In order to proceed further, we need two integrals of the governing dif-
ferential equations (6.2) which will be obtained in the absence of surface

tension. Thus, with m=0 and the use of (4.8), (6.2), . reduce to
I/

wy +2(¢1/¢l)wl =0 , wg'*2(¢2/®2)w2 0

These equations may be integrated in the form

where ¢y and c, are arbitrary functions of €. An immediate consequence of

(5-16)1 o and (5.5) is the following
b

*
Theorem 6.2. If at some time t both the jet spin @ and sectional shearing y

vanish at a point € of an ideal jet without surface tension, then they must

remain zero at § for all time.
This result is similar to one expressing permanence of irrotational motion in
three-dimensional inviscid fluid theory (see, e.g., Milne-Thomson [ 8, p. 86]).
We note, however, that in addition to w, the sectional shearing y must vanish at
£ to ensure that the jet spin at § remain zero for all time.

In the special case of a circular jet, (4.47) implies that the function m
vanishes even in the presence of surface tension. Hence, corresponding to

(6.16), in this case we have

6w = o(g) ., (6.17)

30.




r‘ where ¢ is the radius of the circular jet given by (5.19) and ¢ is an arbitrary
mction of €, From (6.17) follows
. som | 3 If at some time t the ie spi w eniches ¢ a9 poin -3 £
heorem 6.3. 1f at some time t the Jjet spin w vanishes gt a point § of an
eal circular jet with surface tension, then it must remain zero at £ for all
. . . - . X
Lime. Or e s Af the jet spin at € is not zero atl some time t , then w cannot

Y
Tis last result is much stronger than Theorem 6.2, but it is limited
to the special case of a circular jet.

Prior to a statement of the next theorem, we need to dispose of some
preliminary results. With reference to a particular material point £, we
examine first the temporal continuity of the various field quantities associated
with the directed fluid jet. To do this, we allow a point of discontinuity s

| to move with velocity u along the jet. Provided that the point of discontinuity
is not material (that is, u#v), the field quantities of the jet may be dis-
continuous at a certain instant of time, say Q, when s 1is coincident
with €.
Jump conditions for a general directed curve can be derived by the usual

procedure. For our present purpose, we record them here in a form appropriate

for the case in which the curve c¢ is fixed in space, i.e.,
Tp(v-u)l =0 ,
[Cey(v-u)-nll=0 , (6.18)

[[py“aye(v-u) -p*I=0 ,

\
Sl L zw‘wJ‘

where v is the component of the velocity vector tangent to ¢ and where we have

introduced the notation




'
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In the case of the straight, inviscid incompressible fluid jet under considera-

/s

tion, substitution of (3.14)., (4.4), (4.8), (4.11), (4.14), (4.21), (k.49)

(4.51) and (6.1) into (6.18) yields
* \
Mp ﬂﬁlﬁ”(V-U}” &

[!p'q¢l¢2v(v_u) +;D1321]W Brie:

(6.20)
eI 2 -
(] y P ”@l-.’)gﬁa(v"u)n =0 , (o=1 5'3) 5
1 % y o = o
([ e ”251@29’&%(" =0 5 (e=1,2) .
We now restrict attention to a discontinuity in which
[[qaa]] 2.0 (a=1,2) , (6.21)

i.e., a situation in which the lengths of the semiaxes of the elliptical cross-
A
section are continuous at t. This is a mild restriction from the point of view

of a free jet. In view of (6.21), from (6.20)l we obtain

[[VD =0 (6.22)

and this, together with (6.20)2, (6.21) and (4.55), results in
(p =0pll=0 . (6.

Alsc, the last two conditions of (6.20) yield
Gs,0=0 , Mul=0 , (a=1,2) . (i

Hence, the assumption of continuity for aa implies that each of the variables
v,p,p,ﬁa and wa are continuous functions of time. By appealing tc the equations
of motion, we can arrive at a further conclusion regarding the components of the

director seccelerations ¢a. In the absence of surface tencion, (0.2),1 M reduce to
<y

32.
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(6.25)
1 % 2 s 25
P =i Tp ¢2$,L(®2 = '92lu,{2) )
where (4.8) has been used to eliminate Ca' Then, combining (6.21) and (6.23)
to (6.25), we obtain
4 1=0 6.26
lts I ( )

& A
so that aa is also continuous at t.

Consider now a particular material point g of the jet and suppose that for

some time interval

e
(@2
.
N
=~

g

=
Ll <ts=s LO

the jet is circular at g. Then (5.18) and (5.19) must hold for all t satisfying
(6.27) and by differentiating each of these relations with respect to time, we

obtain

In particular, we have

G =g 0 Sa ™0y oM Tws o By Ve & VxR, (6.29)

/

where (6’29)h follows from (6.16). With the help of _z.20‘h, the expressions

(6.25); , and (6.16)l can be combined in the cingle differential equation

> s2

2

818, - ¢252 ik

o

1
=
%

= mlH
N
1l
e
o
=
A
O
e

where we have cet c:=cl:=c2.
In what follows, we hold € fixed at all times and treat (6.30) as an ordinary

differential equation subject to the initial conditions (6.29). Introducing the
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change of variables

1 2% 1
6 =3(8,-¢,) » ¢ =3 +2,) ,
(6.30) can be rewritten in the form
2
o8 44 20
b6+ 5{0 »——?;—égj;} = s
(p7-6")"
and, in terms of the variable §, the initial conditions (6.29) become
Vo= 6 : R
5(tol ) 5(t0/ 8)

Next, we express (6.32) in the form
6§ = £(p,0,8)

where

£ =- o(2 +2[E51%)

P

Now, the function f depends upon § and also implicitly upon time through the
arguments 5 and ¢. Clearly f is a continuous function of § and by virtue of
(6.21) and (6.26) it also depends continuously on t. Moreover, the partial

derivative of f with respect to § is always continuous and bounded? The above

conditions are sufficient to ensure that f satisfies a Lipschitz condition.

Hence, by a uniqueness theorem of ordinary differential equations (see, for

example, Corollary 1, p. 84 of Rosenlicht [10]), there is at most one solution

to (6.32) that also satisfies (6.33). By inspection, this solution is the

trivial one given by

b(t) = Qs ('“’<t<‘”) .

+
respectively.

3k,

The singular points ¢ =1} § may be ruled cut since they imply o2=:0 and ¢l-=0,

—~
N
(@8]
(@8}
s

(6.34)

(6.36)




This means that if the conditions (6.29) hold for a given material point € at
some time Ly then the jet will remain circular at that point for all time.

can make a further observation, however, regarding points at which the jet
may be noncircular at some time during its motion. Suppose that the jet is
noricircular at £ for some time £, Then, it follows from the above analycsis
that the jet can be circular at g at another instant of time, say E, only if at

t all the conditions (6.29) are not satisfied simultaneously, i.e., if either

9, # 3, or w # w, when ¢,

Il
©
n
—~
(o))
.
A

With the aid of (6.25), the condition (6.37) may be restated as

’ (6.38)

1]
o

él # 52 or @, # 52 when @,

t is clear from (6.38) that if a noncircular section should later become
circular, it can remain circular for only an isolated instant of time. 1In
summary, at each material point, the jet is either circular for all time or it
is always noncircular, except possibly at isolated instants of time. Therefore,
for an ideal jet and in the absence of surface tension, we can unambiguously
classify each material point as belonging either to a circular or to a noncircular
jet, depending upon the initial conditions assigned to the jet.

With the above preliminary background, we can now prove

Theorem 6.4. Let an ideal Jet without surface tension be noncircular at some
e e et A e e g e e
.

material point £ and time t and let the rate of sectional rotation g(g,t )=0.

Then, the sectionsl orientation § at I will have the ssme constant value for

Proof. From the remarks preceding the statement of the thecrem, we know that the
Jet will always be noncircular at € except possibly at isolated instants of time.
If we exclude such times for the moment, then é iz always given by (5.18), which

may be written in the form




WL S e
8(o] ~p,) =e; ¢y (6.39)

where in obtaining (6.39) we have also used {h.1h=l ,+ At time t , 9
,(<

at E
=
and hence the right-hand side of (6.39) vanishes identically. It then follows

that at the material point €,

9 = const. whenever 3, # 3, . (6.40)

But we can only have ¢l::®? at € at an isolated instant of time, so that §
must be continuous at these times. Therefore 6 must have the same constant value

for all time and the theorem is proved.

An important consequence of Theorem 6.4 can be stated as

circular everywhere except possibly at isolated points along its length. If the

(o)

*
sectional rotation vanishes everywhere at time t and if the jet does not twist

—~

*
at time t , then the jet must be without twist at all times during its motion.

|
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Solutions in some special cases.

We discuss here some special solutions for circular and elliptical jet
We begin with the former and recall from (5.19), (5.20) and (4.8) that in the
case of a circular jet
o Z = = e 8 : (7
Dl 02 D 2 C] gp ) s JJ]_ 1)2 sy \ /-]
Aftor substituting (7.1}1 into (2.6), the expression for g reduces to
?
22 1
q = T/ o = ‘ ] (7.2
2+\3/2 20472
(1*3,)‘/ as(lw)/
z Z
and the definitions (4.44) and (4.LS) become
k=g v, =0, {T=3)
With the use of (7.1) and (7.3), the system of differential equations (6.2),
(4.16), (4.8) and (5.21) in the case of a circular jet reduces to
. 24 * 2 N S e B D
-p,-Tpgp” =ma(e”), *Mp v , ptmad =gme @ (CHC-w)
(7.4)

@+2w =0 , 2¢+v =0 , §=Cp , 8=u

A simple solution of the system of equations (7.4) in the absence of gravity is

o
X (7.5)
2~ ¥ 2 :
B p=ma(P-p ) =-4mp a w_+mal
“‘P (o] (6]
?
f where use has been made of (4.58) and where Vs 8 and w, are all constants.
’}r
: With the help of (7.5), and (7.4),, the rate of rotation of the director pair
ﬂ | &)
can be expressed in terms of the average pressure 5 in the form
(p_-p) + T/a 1
o ]2 (& 2N
. \(+0O)

‘ - = =+
it AT Tl Tl ey % e
p a

An expression for the orientation g of the director pair is obtained by

integrating (7.6) in the form

3.
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0= Qb+ (ng/vn')z (7.7)

where

Ql+f5 L (7.8)

[t is evident from (7.7) that the rotation of the directors can be decomposed
\

into a rigid rotation (3

b about the axis of the jet plus a steady motion repre-

sented by [b, where the directors twist linearly along its length. In the

absence of surface tensicn, (7.5) is the same solution as that given by Green

and Laws [5] where a further discussion of these rclations may be found. We remark,
however, that wh-a vcz:O, only the rigid part of this motion will persist. Then

due to the rotational symmetry of the director pair in the plsne of the cross-
section, we may put eZ:=O without loss in generality. Since v, can be made to

vanish with a suitable choice of reference frame, it follows that the motion

.7) is dynamically equivalent to rigid rotation alone, i.e.,

i

B =Gl G (7.9)

Next, we examine steady solutions of (7.4) and suppress explicit
dependence upon time in all functions. For such motions, the system of equations

(7.4) can be rewritten in the form

*» 3 2 * 2 2 * 4 -8
-p,-mp g8° = ma(®7), +mp @ vy, , P+mpTq = dmp g (v(, + (" -w)
(7.10)
T elp nD p BETV S UG ¥O,PB0 v VE, *w o
From the combination of (7.lO)u and (7.10)5, we have the immediate integral
<4
Frek , (7.11)

where k is & constant. It is clear from (7.11) that the velocity vanishes only

if the jet is everywhere at rest. In conjuncticn with (7.10)6, this implies that

38.
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kﬁ the director pair rotates if and only if it twists.
' Elimination of ( between (7.10) gives

g ,}4

I'a r ,
I3 V'D'/ SV a = ) ) ({-]/‘/

“

and this can be integrated to yield

w=av , (723
where a is a constant. From (7.13) and ('/.10)( it follows that
e =0 , {7.3k)

as long as the jet is not at rest. We conclude, therefore, that in steady motion

of an ideal circular jet the twist per unit length is constant.

Returning to (7.13) and using (7.11), we can express w in terms of ¢ by
2 5
w = ka/p” . (7.15)

Substituting (7.15) into (7.10),, we obtain

2
e 2 * L 2 7 16
[p+imp o k"] +mg"q = dmp ¢ (v(, +C) . (7.16)
' Now put
A * 2 2
| P = p+ump o'k (7.17)
! A
. £o that p =P . Then, the system of equations (7.10) may be written as
A * 0 ) * 0 A o) * U (- 3
| p,~mpes” =malp”), *mp @Tvy, 5 P+MeTq = gme @ (v( +C)
o (7.18)
' ' ¥ teC m0 ¥ @6 v

2 .-

Apart from the difference in the pressure terms, the above equatlions are

formally equivalent to those appropriate for steady motion of &n ideal circular




jet in the absence of twist. Hence we have the following theorem of correspondence:

[Theorem 7.1. Any steady solution for a nontwisting ideal circular jet will also
b o B g L L d L

A ’ \ X
is replaced by p defined by (7.17). Conversely, any steady solution of (7.4)

with a nonvanishing twist must have a constant twist per unit length and have

¢ and v given by the steady solution (7.4) with w=0.

This result has important implications in certain instances. For example, con-

sider steady flow from a circular hole in the bottom of a large tank. Due to

the Coriolis effect, a slight twist will be imparted to the jet ss it leaves

the tank. But, according t¢ Theorem 7.1 we may ignore the effect of the twist

if only information regarding the jet radius or velocity distribution is desired.
We now turn to the general elliptical jet governed by the system of equa-

tions (6.2), (4.16), (4.8) and (5.12). If we neglect gravity as well as surface

tension, these equations have the simple solution

A A
wl = wl ’ UJ2 == (1)2 b
¢1=a,®2:b3cl:C2=O’V=VO’ (7.19)
* * 2
-p = 4mp ab(aeu/)\i) = 5mp ab(b QS) ;

N A
where a,b,wl,w2 and v, are all constants and must satisfy the condition

A -+ A - \
aw, == bu2 . (7.20)
It ie perhaps more revealing to express (7.20) in terms of the alternative
kinematic variables w and y introduced in section 5. From (5.5), (7.19) and
(7.20), we see that in the present solution both @ end y are constants and
related by

{Qlilfl

Y ® Yo+a

w o (7.21)

Lo,
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where the t sign corresponds to that in (7.20). 1In order to get an understanding

> N . . N A 2 Sh . 3
of the phyeical measning of (7.21), we examine the particular case in which |a-b
2 B S ) 2

is small, or the jet is nearly circular. Then, corresponding to the plus sign
in (7.21), the ratio y/w is small, indicating a preponderance of jet spin

accompanied by a relatively small sectional shearing. The minus sign, on the

>ther hand, corresponds to more sectional shearing than jet spin.
] =

With reference to the plus sign in (7.20), the sectional rotaiicn

described by the solution (7.19) is given by

b2/\ g 2A A A
u)2 a wl : U)ld
b2 % a2 a+b

il

With the help of (7.19)7 and (4.58), this can be written as

éﬁ ~ Q2 B Lp h(Po'p>
(+)

ﬂp*ab(a+b)2 p*(a+b)2

Thus, as might be expected, the average pressure S must be less than P to

sustain the motion (7.19). Again referring only to the case when ol

we may express w and y in terms of po-ﬁ in the form

foi ot 1% ~oel 142 I e ~yvl 142
B Ty T % (PO'P)(a A b) T Y(+) = (pO'P)(a £ b) g
¢} P
A
When an = -bw,, the relations corresponding tc (7.23) and (7.24) are
) ‘~
e S i(p, - P)
) —Q(_) e PR
p (a-b)
and
2. 2 1 1 - P |
W ey “a (Po‘p>(; ° ‘g) s (e Y-y T T (po-p)(a *

p 0

Hence, the solution separates into two distinct cases which, using an obvious

notaticn, we have distinguished by the subscripts (+) and (-). Proceeding as

(7.22)

(7.23)

(7.24)

(7.25)

we did after (7.6), it is possible to show that when the motion is steady, both

(7.23) and (7.29) yield a constant twist, From (7.23) and (7.25) it is also

b1,




Gl clear that in each case a twist of either sense is possible. Two unsteady
motions (corresponding to 6"Q(1ﬁt) in which the noncircular jet appears to
rotate as a rigid body about its axis are also pnmsihlw? Of course, any linear

i combination of both the steady and unsteady motions can occur. The steady motion
is illustrated in Fig. 1. Because the jet is noncircular, the configurastion of
its free surface in the present solution appears more striking than in the cor-
responding solution (7.5) for a circular jet.

We close with a few remarks concerning the behavior of the two solutions
(7.24) and (7.26) in the limit ‘a—bl-*O. When a =b, the jet is circular with a

coastant radius. From (5.20)1, this requires that w » corresponding to the

e
plus sign in (7.20) and the first of the two solutions above. One would expect,
ihen, that we cannot properly take (7.25) and (7.26) to this limit. The fact

i that (7.25) is singular at a=Db seems to bear this out. On the other hand,

taking the limit of (7.23) and (7.24) as b—=a, we find

2 (po-g) 2 h(po-s) ke
G ke T el T B LE &)
p

In view of (5.21), the second of (7.27) is consistent with (7.6) (when T=0) and
the third agrees with (5.20)2. The first of (7.27) really has no significance

since there is no discernible orientation of the cross-section when a =b.

Acknowledgement. The results reported here were obtained in the course of research
b supported by the U.S. Office of Naval Research under Contract NOOOl4-76-C-Ok7lh,
Project NR 062-534, with the University of California, Berkeley.

1’By Corollary 6.1, a truly rigid motion is possible only when a=b. However,

since @ measures the local orientation of the ellipre that forms the free
surface of the jet, s solution of the form 8= Qv+)t would give the appearance
of a rigid vody rotation about the jet axis. &
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where a superposed dot designates the material time derivative holding el fixed.

The local field equations Uf the three-dimensional theory are
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2
Por convenience in what follows we set 6' = g_

'he pzrametric equations 6 0 (¢=1,2) define a material curve in space
thich we gssume to be smooth and non-intersecting. A typical point of this
X is epecified by the position vector

r(g,t) = p(0,0,8,t) (A5
the element of arc length is given by
L

= P 2 ExN

ds (d,ﬂ,%) ae. 5 (86)

where 8:q is the value of 531 on the curve (A5). We assume that the body
35 33
occupies s region of space in the neighborhood of the curve (A5) and is bounded

by the surface
B e
}'(9 s 0 Jo= 3 (-47)

which is such that a surface g = constant intersects (A7) in a closed curve ad.
We denote by @ the curved section of the surface €= constant bounded by aQ.
Let the points gl and §2’ with §l<:§2, form endpoints of a segment of the
curve (AS5) which we denote by ©, and designate by CLl and 02 the particular

Sl

»*
part P of the three-dimensional region occupied by the body such that:

csections escsociated with g€, and gg, respectively. Now consider an arbitrary
/ 3 * . g * *

(i) P conteins P; and (ii) the boundary 3P of P consists of the sections
&4 and O2 and a portion of the surface (A7) bounded at each end by aal and

*
aa?. L body so described is called a rod-like body and the part @ forms

a portion of such a bcdy.

-

The mass m of a portion of the rod-like body is given by

*KP could be more general and ssesume that the laterel bounding surface of the
vody is given by F(8+,0,2) =0 as in [6], but (A7) will be sufficient for the
present purpose.

L5,



P' §2
In terms of the segment P of the material curve (A5), the same mass has the
alternative representation
f el : ,!‘ 4 2 I(‘ ! ] ) (
" l I‘J. P ig d8 Jli') ) pla ) < iF p ds ( ; A9)
. . .
£ a 5 el
where the density p per unit length of the curve (Af is defined by
: Ao e A P
A p(C”‘j)A = Jl P g dg 19 . (Al1O)
)
; a
In view of (A3),, we note that
A= (A11)

"he curve (A5) is fixed in the rod-like body by the condition [6]

(04

N

e
J

1
A el de2 =0 . (a12)
d

We also recall the following definitions for the resultants n,ﬂa,}

~

(o4
ok

5 b
n=J‘ 73 aet dae° “QZI ™ ggt ag® , p?=1 13
~ a~ ~ ~

j e as" ae® . (a13)
a = a

We now assume that for the rod-like body described above, the position

vector (Al)l can be approximated by

v (8,%) (A1L)

AL g

d d =4d
~ 5 AT

jsing this sssumption in (Al) and (A2), we obtain

. a . .
v =v+Ow vV=r w d
~ ~ ~ 2 ~ ~ ? ~ ~X 2
(A15)
. '
g =4 g. = a,+8d a. =r
~ ~ 2 =3 ~3 o el ~ ;

where a prime denotes partiasl differentiation with respect to £. The equations

i of motion in terms of the resultants (Al3) are obtained by suitable integration

6.




of (A3), over a section @ and are given by (for details see [6]):
(=N

an :
—aE 3 )\f, - xi . (A1 )
(03
dp
~ 1 o X QB Z 73
T S U S PO (AL7)
o od o
- y ~X
Lﬂthiaxg ¢ 3E XP oy AlB)
provided that
£oo* X 2 2 ]
M= p &t a0 ac°+| [a0° T'-a0' 7] ALY
“ad
r * L 2 3
x&"’:j 8 p g £ de degw 8% de gl-de 7] g (a20)
a “aa b
and
@ Pox 2 i i €
w® = | o & ?ef agt ad® . (A21)
)

If we adopt the approximation (All4) and identify the vectors ga and the
position vector r in (Alh)l with the directors in (3.1)2 and the position vector
(3.1)l of the curve c, then the development of this Appendix and the results
given in section 3 are formally equivalent. In particular, comparison of the
equations (A1l1) and (Al16) to (A18) with those in (3.5) reveals a 1-1 correspondence
between the two systems of equations provided we identify the expressicns (Al9)
to (A21), respectively, with the assigned fields and the inertia cocefficients
in the theory of a directed curve discussed in section 3.

Before closing this appendix, we obtain the appropriate expression for
incompressibility when the position vector is approximated by (Alh)l. For a
three-dimensional incompressible medium, the mases density p* is constant and

by (AB)l the condition of incompressibility is

d

- >4 ] = 0 )

dt [glbe)g34 = o, KAEZ‘
L7.




hen, with

the use of {Alﬁw

In

=y (A22) becomes
) J,H
od P ad,.
i & il A el
— [d,d.a.]+e8 -=[dd, =]+ == [d,d, ==] =0
it ~) o~~~ it ~l~2 (})5 dt ~lLAL jg
. ~ 1 | l ) } 4 4
n order that | ) hold for all values of § and 8§ , we must have the eparate
nditions
, ad od,,
' ’ ; d ~ =L
- 1d.d.a_| R - 5 R = 5 — {d.d._ = |
it wl 3 dl  ~l~e of 1L ~l~d 03
n the basis of the 1-1 correspondence noted in the preceding paragraph, it i:
Y onable to employ the conditions (A24) as constraints in the theory of a Cosserat
wurve when considering incompressible media.
tion of thi

order 1

expressed in the forms
ad

0 obtain some simplifica-
conditions (A24), we observe that the two conditions (A24)
alternatively be

2 may

J
Ad 3w
~l e Bl = 0
LN Rt A AR -0 .
ad ad 3w
(w.d, —=]+[a =
~l~e 0Of

b e~
e e b+ (49, 3 R

Substituting the restricted forms (4.10) and (4.11) for ga and w_in (A231L 55 Ve
b

~x
see that each of the scalar triple products in the latter equations contains
three coplanar vectors. Hence (AO))]

5 are satisfied identically and incompres-
s
sibility is characterized by (A?h)l.

( ADE

(p23)

(a2l
. /
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Fig. 1: An illustration indicating

=)

of a uniformly twisted elliptical

the steady motion

jet.
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